image_recognition.MNIST.LeNet
Posted by yhijioka
Copy the project to Neural Network Console Cloud
dataset-require=MNIST
Dataset : Training
- Number of data : 60,000
- Variable : x (image)
- Type : Image
- Shape : 1, 28, 28
- Variable : y (label)
- Type : Scalar
Examples of variable x in “Training”
Dataset : Validation
- Number of data : 10,000
- Variable : x (image)
- Type : Image
- Shape : 1, 28, 28
- Variable : y (label)
- Type : Scalar
Examples of variable x in “Validation”
Network Architecture : Main
Type | Value |
---|---|
Output | 21,919 |
CostParameter | 78,810 |
CostAdd | 11,304 |
CostMultiply | 0 |
CostMultiplyAdd | 802,876 |
CostDivision | 490 |
CostExp | 490 |
CostIf | 17,558 |
Training Procedure : Optimizer
Optimize network “Main” using “Training” dataset.
- Batch size : 64
- Solver : Adam
- Learning rate(Alpha) : 0.001
- Beta1 : 0.9
- Beta2 : 0.999
- Epsilon : 1e-08
- Weight decay is not applied.
Experimental Result : Learning Curve
Experimental Result : Evaluation
Evaluate network “MainRuntime” using “Validation” dataset.
Variable : y
- Accuracy : 0.9895
- Avg.Precision : 0.9895772046719382
- Avg.Recall : 0.9894022381602995
- Avg.F-Measures : 0.9894707194531065
References
- Sony Corporation. Neural Network Console : Not just train and evaluate. You can design neural networks with fast and intuitive GUI. https://dl.sony.com/
- Sony Corporation. Neural Network Libraries : An open source software to make research, development and implementation of neural network more efficient. https://nnabla.org/
- Convolution – Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. https://arxiv.org/abs/1606.00915, Yu et al., Multi-Scale Context Aggregation by Dilated Convolutions. https://arxiv.org/abs/1511.07122
- ReLU – Vinod Nair, Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.6419&rep=rep1&type=pdf
- Adam – Kingma and Ba, Adam: A Method for Stochastic Optimization. https://arxiv.org/abs/1412.6980