Hitachi_Influenza_RNN_All

Posted by not set

Copy the project to Neural Network Console Cloud

Network Architecture : Main

Type Value
Output 46,172
CostParameter 673,201
CostAdd 7,651
CostMultiply 15,300
CostMultiplyAdd 665,550
CostDivision 0
CostExp 0
CostIf 7,650

Training Procedure : Optimizer

Optimize network “Main” using “Training” dataset.

  • Batch size : 32
  • Solver : Adam
    • Learning rate(Alpha) : 0.001
      • decayed every 1 iteration using an exponential rate of 0.1 .
    • Beta1 : 0.9
    • Beta2 : 0.999
    • Epsilon : 1e-08
  • Weight decay is not applied.

Experimental Result : Learning Curve

Experimental Result : Evaluation

Evaluate network “MainRuntime” using “Validation” dataset.

Variable : y

  • Accuracy : 0.8048780487804879
  • Avg.Precision : 0.6
  • Avg.Recall : 0.8974358974358974
  • Avg.F-Measures : 0.6095238095238096

References

  • Sony Corporation. Neural Network Console : Not just train and evaluate. You can design neural networks with fast and intuitive GUI. https://dl.sony.com/
  • Sony Corporation. Neural Network Libraries : An open source software to make research, development and implementation of neural network more efficient. https://nnabla.org/
  • LeakyReLU – Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng. Rectifier Nonlinearities Improve Neural Network Acoustic Models. https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
  • Adam – Kingma and Ba, Adam: A Method for Stochastic Optimization. https://arxiv.org/abs/1412.6980