ligma_recognition

Posted by amarc1994

Copy the project to Neural Network Console Cloud

Very Deep Convolutional Networks for Large-Scale Image Recognition

Karen Simonyan, Andrew Zisserman

https://arxiv.org/abs/1409.1556

Dataset : Training

  • Number of data : 10,000
  • Variable : x (image)
  • Type : Image
  • Shape : 1, 112, 112
  • Variable : y (label)
  • Type : Matrix
  • Shape : 35, 7
  • Variable : r (region)
  • Type : Matrix
  • Shape : 35, 28

Examples of variable x in “Training”

Dataset : Validation

  • Number of data : 1,500
  • Variable : x (image)
  • Type : Image
  • Shape : 1, 28, 28
  • Variable : y (9)
  • Type : Scalar

Examples of variable x in “Validation”

Dataset : Dataset

  • Number of data : 60,000
  • Variable : x (image)
  • Type : Image
  • Shape : 1, 28, 28
  • Variable : y (label)
  • Type : Scalar

Examples of variable x in “Dataset”

Dataset : Dataset_1

  • Number of data : 50,000
  • Variable : x (image)
  • Type : Image
  • Shape : 3, 32, 32
  • Variable : y (label)
  • Type : Scalar

Examples of variable x in “Dataset_1”

Dataset : Dataset_2

  • Number of data : 20
  • Variable : x (in)
  • Type : Image
  • Shape : 1, 64, 64
  • Variable : y (out)
  • Type : Image
  • Shape : 1, 64, 64

Examples of variable x, y in “Dataset_2”

Network Architecture : VGG13Train

Type Value
Output 26,494,416
CostParameter 133,047,848
CostAdd 12,403,664
CostMultiply 158,720
CostMultiplyAdd 11,308,466,176
CostDivision 1,000
CostExp 1,000
CostIf 18,372,608

Network Architecture : Training

Type Value
Output 844,298
CostParameter 133,047,848
CostAdd 12,403,664
CostMultiply 158,721
CostMultiplyAdd 11,308,466,176
CostDivision 1,000
CostExp 1,000
CostIf 18,372,608

Network Architecture : Top1Error

Type Value
Output 457,728
CostParameter 0
CostAdd 0
CostMultiply 0
CostMultiplyAdd 0
CostDivision 0
CostExp 0
CostIf 0

Network Architecture : Top5Error

Type Value
Output 457,728
CostParameter 0
CostAdd 0
CostMultiply 0
CostMultiplyAdd 0
CostDivision 0
CostExp 0
CostIf 0

Network Architecture : Runtime

Type Value
Output 457,728
CostParameter 0
CostAdd 0
CostMultiply 0
CostMultiplyAdd 0
CostDivision 0
CostExp 0
CostIf 0

Network Architecture : VGG13

Type Value
Output 27,289,040
CostParameter 133,047,848
CostAdd 12,403,664
CostMultiply 150,528
CostMultiplyAdd 11,308,466,176
CostDivision 1,000
CostExp 1,000
CostIf 18,372,608

Training Procedure : Optimizer

Optimize network “Training” using “Training” dataset.

  • Batch size : 128
    • by accumulating the result of batch-size 32 by 4 times.
  • Solver : Momentum
    • Learning rate: 1e-05
      • decayed every 15 iteration using an exponential rate of 0.1 .
    • Momentum : 0.9
  • Weight decay : 0.0005

Training Procedure : Optimizer_1

Optimize network “Main” using “Training” dataset.

  • Batch size : 32
  • Solver : Adam
    • Learning rate(Alpha) : 0.001
    • Beta1 : 0.9
    • Beta2 : 0.999
    • Epsilon : 1e-08
  • Weight decay is not applied.

References

  • Sony Corporation. Neural Network Console : Not just train and evaluate. You can design neural networks with fast and intuitive GUI. https://dl.sony.com/
  • Sony Corporation. Neural Network Libraries : An open source software to make research, development and implementation of neural network more efficient. https://nnabla.org/
  • Convolution – Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. https://arxiv.org/abs/1606.00915, Yu et al., Multi-Scale Context Aggregation by Dilated Convolutions. https://arxiv.org/abs/1511.07122
  • ReLU – Vinod Nair, Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.6419&rep=rep1&type=pdf
  • Momentum – Ning Qian : On the Momentum Term in Gradient Descent Learning Algorithms. http://www.columbia.edu/~nq6/publications/momentum.pdf
  • Adam – Kingma and Ba, Adam: A Method for Stochastic Optimization. https://arxiv.org/abs/1412.6980