FCN-VGG16

Posted by SNC_official

Copy the project to Neural Network Console Cloud

Dataset : Training

  • Number of data : 40,000
  • Variable : x (In)
  • Type : Image
  • Shape : 1, 64, 64
  • Variable : y (Out)
  • Type : Image
  • Shape : 1, 64, 64

Examples of variable x, y in “Training”

Dataset : Validation

  • Number of data : 1,000
  • Variable : x (in)
  • Type : Image
  • Shape : 1, 64, 64
  • Variable : y (out)
  • Type : Image
  • Shape : 1, 64, 64

Examples of variable x, y in “Validation”

Network Architecture : Main

Type Value
Output 2,457,020
CostParameter 134,264,544
CostAdd 1,142,948
CostMultiply 32,768
CostMultiplyAdd 1,727,588,352
CostDivision 4,096
CostExp 4,096
CostIf 1,638,400

Training Procedure : Optimizer

Optimize network “Main” using “Training” dataset.

  • Batch size : 8
  • Solver : Momentum
    • Learning rate: 0.01
      • decayed every 1 iteration using an exponential rate of 0.5 .
    • Momentum : 0.9
  • Weight decay : 0.0016

Experimental Result : Learning Curve

References

  • Sony Corporation. Neural Network Console : Not just train and evaluate. You can design neural networks with fast and intuitive GUI. https://dl.sony.com/
  • Sony Corporation. Neural Network Libraries : An open source software to make research, development and implementation of neural network more efficient. https://nnabla.org/
  • Convolution – Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. https://arxiv.org/abs/1606.00915, Yu et al., Multi-Scale Context Aggregation by Dilated Convolutions. https://arxiv.org/abs/1511.07122
  • ReLU – Vinod Nair, Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.6419&rep=rep1&type=pdf
  • Momentum – Ning Qian : On the Momentum Term in Gradient Descent Learning Algorithms. http://www.columbia.edu/~nq6/publications/momentum.pdf