unet_semantic_segmentation

Posted by ttmax

Copy the project to Neural Network Console Cloud

Simple example of semantic segmentation with UNet like architecture.

U-Net: Convolutional Networks for Biomedical Image Segmentation

Olaf Ronneberger, Philipp Fischer, Thomas Brox

https://arxiv.org/abs/1505.04597

dataset-require=PASCALVOC2012_Segmentation

Network Architecture : UNet

Type Value
Output 65,536,000
CostParameter 33,614,336
CostAdd 36,241,408
CostMultiply 36,175,872
CostMultiplyAdd 84,439,728,128
CostDivision 0
CostExp 0
CostIf 36,175,872

Network Architecture : DSUnit

Type Value
Output 25,952,256
CostParameter 39,104
CostAdd 8,388,608
CostMultiply 8,388,608
CostMultiplyAdd 2,529,165,312
CostDivision 0
CostExp 0
CostIf 8,388,608

Network Architecture : USUnit

Type Value
Output 113,246,208
CostParameter 206,336
CostAdd 33,554,432
CostMultiply 33,554,432
CostMultiplyAdd 53,955,526,656
CostDivision 0
CostExp 0
CostIf 33,554,432

Network Architecture : Train

Type Value
Output 2,091,044
CostParameter 33,614,336
CostAdd 36,503,552
CostMultiply 36,438,016
CostMultiplyAdd 84,439,728,128
CostDivision 65,536
CostExp 65,536
CostIf 36,306,944

Network Architecture : Validation

Type Value
Output 1,239,076
CostParameter 33,614,336
CostAdd 36,438,016
CostMultiply 36,438,016
CostMultiplyAdd 84,439,728,128
CostDivision 0
CostExp 0
CostIf 36,306,944

Network Architecture : Runtime

Type Value
Output 1,551,488
CostParameter 33,614,336
CostAdd 36,630,040
CostMultiply 36,564,504
CostMultiplyAdd 84,439,728,128
CostDivision 64,009
CostExp 64,009
CostIf 36,495,912

Training Procedure : Optimizer

Optimize network “Train” using “Training” dataset.

  • Batch size : 1
  • Solver : Momentum
    • Learning rate: 0.002
    • Momentum : 0.99
  • Weight decay : 0.0005

References

  • Sony Corporation. Neural Network Console : Not just train and evaluate. You can design neural networks with fast and intuitive GUI. https://dl.sony.com/
  • Sony Corporation. Neural Network Libraries : An open source software to make research, development and implementation of neural network more efficient. https://nnabla.org/
  • Convolution – Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. https://arxiv.org/abs/1606.00915, Yu et al., Multi-Scale Context Aggregation by Dilated Convolutions. https://arxiv.org/abs/1511.07122
  • BatchNormalization – Ioffe and Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. https://arxiv.org/abs/1502.03167
  • ReLU – Vinod Nair, Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann Machines. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.6419&rep=rep1&type=pdf
  • Momentum – Ning Qian : On the Momentum Term in Gradient Descent Learning Algorithms. http://www.columbia.edu/~nq6/publications/momentum.pdf