tutorial.basics.01_logistic_regression

Posted by Yosuke Fukui

Copy the project to Neural Network Console Cloud

dataset-require=MNIST

Dataset : Training

  • Number of data : 1,500
  • Variable : x (image)
  • Type : Image
  • Shape : 1, 28, 28
  • Variable : y (9)
  • Type : Scalar

Examples of variable x in “Training”

Dataset : Validation

  • Number of data : 500
  • Variable : x (image)
  • Type : Image
  • Shape : 1, 28, 28
  • Variable : y (9)
  • Type : Scalar

Examples of variable x in “Validation”

Network Architecture : Main

Type Value
Output 787
CostParameter 785
CostAdd 1
CostMultiply 1
CostMultiplyAdd 784
CostDivision 0
CostExp 0
CostIf 1

Training Procedure : Optimizer

Optimize network “Main” using “Training” dataset.

  • Batch size : 64
  • Solver : Adam
    • Learning rate(Alpha) : 0.001
    • Beta1 : 0.9
    • Beta2 : 0.999
    • Epsilon : 1e-08
  • Weight decay is not applied.

References

  • Sony Corporation. Neural Network Console : Not just train and evaluate. You can design neural networks with fast and intuitive GUI. https://dl.sony.com/
  • Sony Corporation. Neural Network Libraries : An open source software to make research, development and implementation of neural network more efficient. https://nnabla.org/
  • LeakyReLU – Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng. Rectifier Nonlinearities Improve Neural Network Acoustic Models. https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
  • Adam – Kingma and Ba, Adam: A Method for Stochastic Optimization. https://arxiv.org/abs/1412.6980